Package: EMMIXmfa 2.0.71
EMMIXmfa: Mixture Models with Component-Wise Factor Analyzers
We provide functions to fit finite mixtures of multivariate normal or t-distributions to data with various factor analytic structures adopted for the covariance/scale matrices. The factor analytic structures available include mixtures of factor analyzers and mixtures of common factor analyzers. The latter approach is so termed because the matrix of factor loadings is common to components before the component-specific rotation of the component factors to make them white noise. Note that the component-factor loadings are not common after this rotation. Maximum likelihood estimators of model parameters are obtained via the Expectation-Maximization algorithm. See descriptions of the algorithms used in McLachlan GJ, Peel D (2000) <doi:10.1002/0471721182.ch8> McLachlan GJ, Peel D (2000) <ISBN:1-55860-707-2> McLachlan GJ, Peel D, Bean RW (2003) <doi:10.1016/S0167-9473(02)00183-4> McLachlan GJ, Bean RW, Ben-Tovim Jones L (2007) <doi:10.1016/j.csda.2006.09.015> Baek J, McLachlan GJ, Flack LK (2010) <doi:10.1109/TPAMI.2009.149> Baek J, McLachlan GJ (2011) <doi:10.1093/bioinformatics/btr112> McLachlan GJ, Baek J, Rathnayake SI (2011) <doi:10.1002/9781119995678.ch9>.
Authors:
EMMIXmfa_2.0.71.tar.gz
EMMIXmfa_2.0.71.zip(r-4.5)EMMIXmfa_2.0.71.zip(r-4.4)EMMIXmfa_2.0.71.zip(r-4.3)
EMMIXmfa_2.0.71.tgz(r-4.4-x86_64)EMMIXmfa_2.0.71.tgz(r-4.4-arm64)EMMIXmfa_2.0.71.tgz(r-4.3-x86_64)EMMIXmfa_2.0.71.tgz(r-4.3-arm64)
EMMIXmfa_2.0.71.tar.gz(r-4.5-noble)EMMIXmfa_2.0.71.tar.gz(r-4.4-noble)
EMMIXmfa_2.0.71.tgz(r-4.4-emscripten)EMMIXmfa_2.0.71.tgz(r-4.3-emscripten)
EMMIXmfa.pdf |EMMIXmfa.html✨
EMMIXmfa/json (API)
# Install 'EMMIXmfa' in R: |
install.packages('EMMIXmfa', repos = c('https://suren-rathnayake.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/suren-rathnayake/emmixmfa/issues
clusteringclustering-algorithmmixture-distributionsmixture-model
Last updated 6 years agofrom:413ff59039. Checks:OK: 1 ERROR: 8. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 07 2024 |
R-4.5-win-x86_64 | ERROR | Nov 07 2024 |
R-4.5-linux-x86_64 | ERROR | Nov 07 2024 |
R-4.4-win-x86_64 | ERROR | Nov 07 2024 |
R-4.4-mac-x86_64 | ERROR | Nov 07 2024 |
R-4.4-mac-aarch64 | ERROR | Nov 07 2024 |
R-4.3-win-x86_64 | ERROR | Nov 07 2024 |
R-4.3-mac-x86_64 | ERROR | Nov 07 2024 |
R-4.3-mac-aarch64 | ERROR | Nov 07 2024 |
Exports:arifactor_scoresgmfmcfamctfamfaminmismtfaplot_factorsrmix
Dependencies:
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Mixture Models with Component-Wise Factor Analyzers | EMMIXmfa-package emmixmfa-package EMMIXmfa emmixmfa |
Computes adjusted Rand Index | ari |
Computes Factor Scores | factor_scores factor_scores.mcfa factor_scores.mctfa plot.emmix |
General Matrix Factorization | gmf |
Mixture of Common Factor Analyzers | mcfa mcfa.default mctfa mctfa.default |
Mixtures of Factor Analyzers | mfa mfa.default mtfa mtfa.default plot.mfa plot.mtfa |
Minimum Number of Misallocations | minmis |
Plot Function for Factor Scores | plot_factors |
Extend Clustering to New Observations | predict.emmix predict.mcfa predict.mctfa predict.mfa predict.mtfa |
Print Method for Class 'emmix' | print.emmix print.mcfa print.mctfa print.mfa print.mtfa summary.emmix |
Random Deviates from EMMIX Models | rmix |