Package: EMMIXmfa 2.0.71

EMMIXmfa: Mixture Models with Component-Wise Factor Analyzers

We provide functions to fit finite mixtures of multivariate normal or t-distributions to data with various factor analytic structures adopted for the covariance/scale matrices. The factor analytic structures available include mixtures of factor analyzers and mixtures of common factor analyzers. The latter approach is so termed because the matrix of factor loadings is common to components before the component-specific rotation of the component factors to make them white noise. Note that the component-factor loadings are not common after this rotation. Maximum likelihood estimators of model parameters are obtained via the Expectation-Maximization algorithm. See descriptions of the algorithms used in McLachlan GJ, Peel D (2000) <doi:10.1002/0471721182.ch8> McLachlan GJ, Peel D (2000) <ISBN:1-55860-707-2> McLachlan GJ, Peel D, Bean RW (2003) <doi:10.1016/S0167-9473(02)00183-4> McLachlan GJ, Bean RW, Ben-Tovim Jones L (2007) <doi:10.1016/j.csda.2006.09.015> Baek J, McLachlan GJ, Flack LK (2010) <doi:10.1109/TPAMI.2009.149> Baek J, McLachlan GJ (2011) <doi:10.1093/bioinformatics/btr112> McLachlan GJ, Baek J, Rathnayake SI (2011) <doi:10.1002/9781119995678.ch9>.

Authors:Suren Rathnayake, Geoff McLachlan, David Peel, Jangsun Baek

EMMIXmfa_2.0.71.tar.gz
EMMIXmfa_2.0.71.zip(r-4.5)EMMIXmfa_2.0.71.zip(r-4.4)EMMIXmfa_2.0.71.zip(r-4.3)
EMMIXmfa_2.0.71.tgz(r-4.4-x86_64)EMMIXmfa_2.0.71.tgz(r-4.4-arm64)EMMIXmfa_2.0.71.tgz(r-4.3-x86_64)EMMIXmfa_2.0.71.tgz(r-4.3-arm64)
EMMIXmfa_2.0.71.tar.gz(r-4.5-noble)EMMIXmfa_2.0.71.tar.gz(r-4.4-noble)
EMMIXmfa_2.0.71.tgz(r-4.4-emscripten)EMMIXmfa_2.0.71.tgz(r-4.3-emscripten)
EMMIXmfa.pdf |EMMIXmfa.html
EMMIXmfa/json (API)

# Install 'EMMIXmfa' in R:
install.packages('EMMIXmfa', repos = c('https://suren-rathnayake.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/suren-rathnayake/emmixmfa/issues

On CRAN:

clusteringclustering-algorithmmixture-distributionsmixture-model

3.29 score 3 stars 13 scripts 213 downloads 10 exports 0 dependencies

Last updated 6 years agofrom:413ff59039. Checks:OK: 1 ERROR: 8. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 07 2024
R-4.5-win-x86_64ERRORNov 07 2024
R-4.5-linux-x86_64ERRORNov 07 2024
R-4.4-win-x86_64ERRORNov 07 2024
R-4.4-mac-x86_64ERRORNov 07 2024
R-4.4-mac-aarch64ERRORNov 07 2024
R-4.3-win-x86_64ERRORNov 07 2024
R-4.3-mac-x86_64ERRORNov 07 2024
R-4.3-mac-aarch64ERRORNov 07 2024

Exports:arifactor_scoresgmfmcfamctfamfaminmismtfaplot_factorsrmix

Dependencies:

Readme and manuals

Help Manual

Help pageTopics
Mixture Models with Component-Wise Factor AnalyzersEMMIXmfa-package emmixmfa-package EMMIXmfa emmixmfa
Computes adjusted Rand Indexari
Computes Factor Scoresfactor_scores factor_scores.mcfa factor_scores.mctfa plot.emmix
General Matrix Factorizationgmf
Mixture of Common Factor Analyzersmcfa mcfa.default mctfa mctfa.default
Mixtures of Factor Analyzersmfa mfa.default mtfa mtfa.default plot.mfa plot.mtfa
Minimum Number of Misallocationsminmis
Plot Function for Factor Scoresplot_factors
Extend Clustering to New Observationspredict.emmix predict.mcfa predict.mctfa predict.mfa predict.mtfa
Print Method for Class 'emmix'print.emmix print.mcfa print.mctfa print.mfa print.mtfa summary.emmix
Random Deviates from EMMIX Modelsrmix