Package: deepgmm 0.1.12

deepgmm: Deep Gaussian Mixture Models

Deep Gaussian mixture models as proposed by Viroli and McLachlan (2019) <doi:10.1007/s11222-017-9793-z> provide a generalization of classical Gaussian mixtures to multiple layers. Each layer contains a set of latent variables that follow a mixture of Gaussian distributions. To avoid overparameterized solutions, dimension reduction is applied at each layer by way of factor models.

Authors:Cinzia Viroli, Geoffrey J. McLachlan

deepgmm_0.1.12.tar.gz
deepgmm_0.1.12.zip(r-4.5)deepgmm_0.1.12.zip(r-4.4)deepgmm_0.1.12.zip(r-4.3)
deepgmm_0.1.12.tgz(r-4.5-any)deepgmm_0.1.12.tgz(r-4.4-any)deepgmm_0.1.12.tgz(r-4.3-any)
deepgmm_0.1.12.tar.gz(r-4.5-noble)deepgmm_0.1.12.tar.gz(r-4.4-noble)
deepgmm_0.1.12.tgz(r-4.4-emscripten)deepgmm_0.1.12.tgz(r-4.3-emscripten)
deepgmm.pdf |deepgmm.html
deepgmm/json (API)

# Install 'deepgmm' in R:
install.packages('deepgmm', repos = c('https://suren-rathnayake.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/suren-rathnayake/deepgmm/issues

On CRAN:

clusteringdeep-learningmixed-models

3.65 score 9 stars 8 scripts 262 downloads 2 exports 3 dependencies

Last updated 2 years agofrom:cc9ec2436b. Checks:1 OK, 7 ERROR. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 31 2025
R-4.5-winERRORJan 31 2025
R-4.5-macERRORJan 31 2025
R-4.5-linuxERRORJan 31 2025
R-4.4-winERRORJan 31 2025
R-4.4-macERRORJan 31 2025
R-4.3-winERRORJan 31 2025
R-4.3-macERRORJan 31 2025

Exports:deepgmmmodel_selection

Dependencies:corpcormclustmvtnorm